Vegetative compatibility and genetic analysis of Colletotrichum lindemuthianum isolates from Brazil.

نویسندگان

  • Q L Barcelos
  • E A Souza
  • K J Damasceno e Silva
چکیده

The causal agent of common bean anthracnose, Colletotrichum lindemuthianum, has considerable genetic and pathogenic variability, which makes the development of resistant cultivars difficult. We examined variability within and between Brazilian pathotypes of C. lindemuthianum through the identification of vegetative compatibility groups (VCGs) and by RAPD analysis. Two hundred and ninety-five nit mutants were obtained from 47 isolates of various pathotypes of the fungus collected from different regions, host cultivars and years. In complementation tests, 45 VCGs were identified. Eighteen RAPD primers were employed in the molecular analyses, producing 111 polymorphic bands. Estimates of genetic similarities, determined from the Sorence-Dice coefficient, ranged from 0.42 to 0.97; the dendrogram obtained by cluster analysis revealed 18 groups of isolates. RAPD and VCG markers presented high genotypic diversity. The number of significant associations (P=0.05) between RAPD, VCG and pathogenicity markers ranged from 0 (VCG) to 80% (pathogenicity). The test of multilocus association (rd) for RAPD markers was significantly different from zero (P<0.001), suggesting linkage disequilibrium. However, the results for VCG markers show the presence of recombination mechanisms. In conclusion, RAPD markers and VCGs were useful for detecting genetic variability among isolates of C. lindemuthianum. We found considerable diversity among isolates from the same geographic origin within a short interval; this suggests rapid evolution. There is a need for further studies to elucidate the population structure of this pathogen in agro-ecosystems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System

Colletotrichum lindemuthianum, the causative agent of bean anthracnose, is one of the most common pathogens leading to expressive damage to plants beyond presenting noticeable variability. The knowledge on vegetative compatibility groups (VCGs) is of particular interest in asexual fungi as they subdivide the population in groups that can exchange genetic information via heterokaryosis and the p...

متن کامل

Comparison of Colletotrichum orbiculare and Several Allied Colletotrichum spp. for mtDNA RFLPs, Intron RFLP and Sequence Variation, Vegetative Compatibility, and Host Specificity.

ABSTRACT Based on spore morphology, appressorium development, sequence similarities of the rDNA, and similarities in amplified restriction fragment length polymorphism (AFLP), it has been proposed that Colletotrichum orbiculare, C. trifolii, C. lindemuthianum, and C. malvarum represent a single phylogenetic species, C. orbiculare. In the current study, the phylogenetic relationship among isolat...

متن کامل

Vegetative compatibility and parasexual segregation in Colletotrichum lindemuthianum, a fungal pathogen of the common bean.

The heterokaryotic and vegetative diploid phases of Colletotrichum lindemuthianum are described using nutritional and biochemical markers. Nitrate non-utilizing mutants (nit), derived from R2047, R89, R73, R65, and R23 isolates, were paired in all possible combinations to obtain heterokaryons. Although pairings R2047/R89, R2047/R73, R65/R73, and R73/R23 showed complete vegetative incompatibilit...

متن کامل

Genetic relatedness of Brazilian Colletotrichum truncatum isolates assessed by vegetative compatibility groups and RAPD analysis.

The genetic variation among nine soybean-originating isolates of Colletotrichum truncatum from different Brazilian states was studied. Nitrate non-utilizing (nit) mutants were obtained with potassium chlorate and used to characterize vegetative compatibility reactions, heterokaryosis and RAPD profile. Based on pairings of nit mutants from the different isolates, five vegetative complementation ...

متن کامل

Vegetative compatibility and rep-PCR DNA fingerprinting groups of Fusarium solani isolates obtained from different hosts and their pathogenicity

Fusarium solain is the most important pathogen of huge range of plant hosts, especially potato in the word, which causes tuber rot in storage and root rot of potato plants in fields. Fifty four isolates from potato, bean, chickpea and cucurbit (melon, watermelon and cucumber) was subjected in a study through analysis of vegetative compatibility groups (VCGs) and rep-PCR DNA fingerprinting. Nit ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 10 1  شماره 

صفحات  -

تاریخ انتشار 2011